

Modus-C

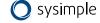
Приточно-вытяжной диффузор с камерой статического давления

Описание

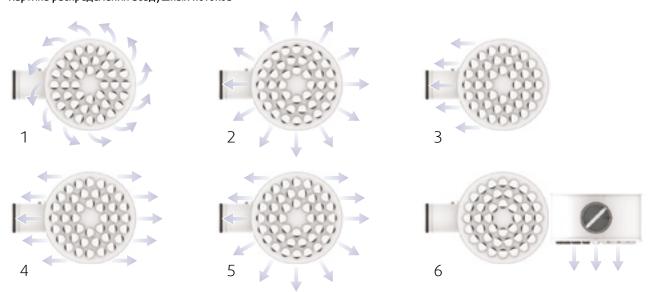
Приточно-вытяжной диффузор для открытого монтажа Modus-C предназначен для подачи возду-ха в офисах, магазинах, медицин-ских кабинетах, аудиториях и т. д.

Особенности

- Универсальная регулировкавоздушного потока; •Благодаря отличным характеристикам смешения приточноговоздуха с воздухом в помещении даже при небольших объемах, такие диффузоры хорошоиспользовать для VAV-вентиляции
- Высокая производительность наряду с низким уровнем шумаи умеренными перепадами давления
- Компактная конструкция с кла-паном и измерительными зон-дами (на приток и на вытяжку).


Конструкция

Корпус Modus-C (оцинкованная сталь), состоит из камеры статического давления, патрубка с резиновым уплотнением и лицевой пластины с поворотными соплами. Вращающиеся сопла (360°) обеспечивают 100% регулировку распределения воздуха в любом направлении — воздух можно направлять по горизонтали, вертикали, на 1-2-3-4 стороны.


Соединительный патрубок оснащен заслонкой регулировки расхода воздуха и зондами для измерения расхода приточного и вытяжного воздуха. Измерительные зонды доступны снаружи, поэтому проведение замеров и регулировка не требуют демонтажа диффузора. Для фиксации диффузора используется также гайка, расположенная в верхней части камеры статического давления.


- 1 Камера статического давления
- 2 Патрубок с резиновым уплотнением
- 3 Клапан (регулировка снаружи)
- 4 Измерительный зонд (на приток)
- 5 Гайка (заклепка) для фиксации подвески
- 6 Магниты для лицевой панели
- 7 Лицевая панель
- 8 Сопла

Картина распределения воздушных потоков


Размеры

Типоразмеры

	ØD	ØA	ØP	В	С	Е	m
	MM					kg	
Modus-C-100	98	324	314	172	39	155	3,0
Modus-C-125	123	408	398	202	41	165	4,4
Modus-C-160	158	497	487	252	49	185	6,8
Modus-C-200	198	597	587	287	46	210	9,2
Modus-C-250	248	608	598	332	44	235	10,6
Modus-C-315	313	632	622	422	56	265	13,3

Код заказа

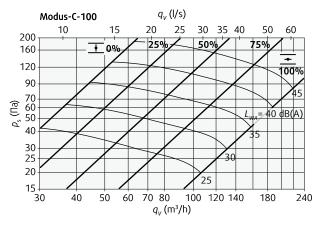
Расчет дальнобойности воздушной струи при конечных скоростях

 $Lx = L0.2 \times 0.2/x$

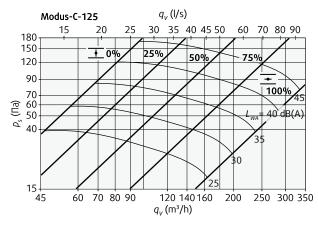
Диаграммы

P _s	Па	Перепад давления	
q _v	м³/ч, л/ч	Расход воздуха	
L _{wa}	дБ(А)	А-взвешенный уровень звуковой мощности	
L _w	дБ	Уровень звуковой мощности	
ΔΤ	K	К Разница температур приточного воздуха и воздуха в помещении	
L _{0,2}	L _{0.2} м Дальнобойность воздушной струи при конечной скорости 0,2 м/с		
L _x M		Дальнобойность воздушной струи при конечной скорости х м/с	
x M/c Koi		Конечная скорость в диапазоне 0,1 м/с 1 м/с	
<u></u> 0%,		Положение клапана на диаграммах представлено в виде %.	
25%, 50%, 75%,		<u>—</u> полностью закрытый клапан	
<u>+</u> 100%			

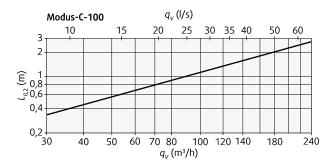
Ta6. Корректирующий коэффициент для горизонтального распределения

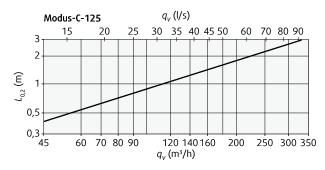

ΔT = -10K	ΔT = 10K		
0.75	0.83		

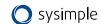
$$L_{(\Delta T = 10 \text{ K})} = L_{(\Delta T = 0 \text{ K})} \times 0.83$$

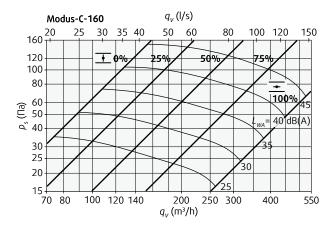

Таб. Корректирующий коэффициент для горизонтального распределения в зависимости от положения поворотных дисков

Ha 4	Ha 3	Ha 2	Ha 2	
стороны	стороны	стороны	сторону	
1,4	1,9	2,3	3,3	

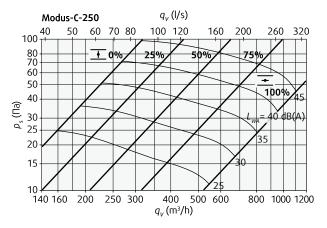

$$L_{0,2 \text{ (3 way)}} = L_{0,2 \text{ (radial)}} \times 1,9$$


Перепад давления & А-взвешенный уровень звуковой мощности

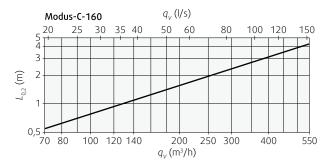

Перепад давления & А-взвешенный уровень звуковой мощности

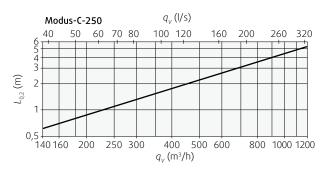


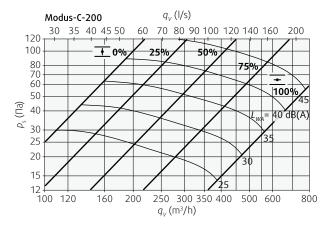
Дальнобойность изотермической струи при горизонтальном распределении на конечной скорости 0,2 м/с

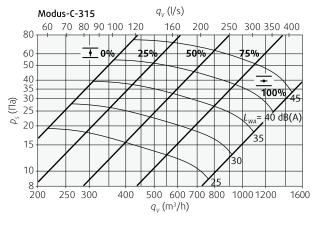


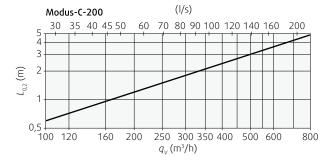
Дальнобойность изотермической струи при горизонтальном распределении на конечной скорости $0,2\,\mathrm{m/c}$

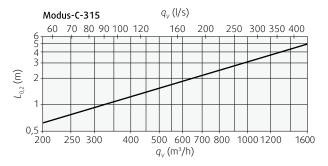


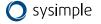

Перепад давления & А-взвешенный уровень звуковой мощности


Перепад давления & А-взвешенный уровень звуковой мощности


Дальнобойность изотермической струи при горизонтальном распределении на конечной скорости 0,2 м/с


Дальнобойность изотермической струи при горизонтальном распределении на конечной скорости 0,2 м/с


Перепад давления & А-взвешенный уровень звуковой мощности


Перепад давления & А-взвешенный уровень звуковой мощности

Дальнобойность изотермической струи при горизонтальном распределении на конечной скорости 0,2 м/с

Дальнобойность изотермической струи при горизонтальном распределении на конечной скорости 0,2 м/с

