

ИНВЕРТОРНЫЕ КАНАЛЬНЫЕ КОНДИЦИОНЕРЫ SYSTEMAIR

ИНСТРУКЦИЯ ПО МОНТАЖУ

SYSPLIT DUCT 18 EVO HP Q SYSPLIT DUCT 24 EVO HP Q SYSPLIT DUCT 36 EVO HP Q SYSPLIT DUCT 48 EVO HP R SYSPLIT DUCT 60 EVO HP R

Содержание

1.	Техника безопасности	3
	Информация по монтажу	
3.	Осмотр и обращение с кондиционером	5
4.	Монтаж внутреннего блока	5
5.	Монтаж наружного блока	.12
6.	Монтаж трубопровода	.15
7.	Установка дренажной системы	.19
8.	Электроподключение	.21
9.	Режим тестирования	.22
10	Коды ошибок	.23
11.	. Правила утилизации	.23
12	Сертификация	2:

1. Техника безопасности

- Перед началом установки кондиционера, убедитесь, что Ваши действия соответствуют местному и международному законодательству.
- Храните Инструкцию по установке в доступном месте.
- Внимательно ознакомьтесь с данной Инструкцией перед установкой Кондиционера.
- В целях безопасности следуйте указанным в данной Инструкции правилам.

Предупреждения в данной инструкции разделены на 2 категории:

Описывает меры предосторожности, необходимые для предотвращения травмы или гибели человека, а также существенной порчи здания или прибора.

Описывает меры предосторожности, необходимые для предотвращения повреждения прибора.

После завершения установки кондиционера, убедитесь, что прибор функционирует правильно. Пожалуйста, проинструктируйте Пользователя на предмет управления и обслуживания кондиционера. Напомните ему, что следует сохранять данную Инструкцию вместе с Руководством пользователя.

Установку, ремонт и сервисное обслуживание прибора должен производить только опытный и квалифицированный персонал Продавца или сертифицированного технического центра.

- Внимательно следуйте данной Инструкции. Неправильная установка, ремонт и сервисное обслуживание оборудования могут привести к ударам током, короткому замыканию, утечке хладагента, возгоранию и другим повреждениям.
- Если кондиционер установлен в небольшом помещении, необходимо принять меры для предотвращения концентрации хладагента свыше безопасных пределов в случае его утечки. В случае превышения допустимой концентрации хладагента может произойти несчастный случай.
- Для установки кондиционера используйте приложенные детали и комплектующие.
- Устанавливайте кондиционер на прочную, устойчивую поверхность, способную выдержать его вес.
- Не устанавливайте кондиционер в помещениях с высокой влажностью.
- Кондиционер должен установлен на высоте не менее 2,3 м от уровня пола.
- Обесточьте электрическую сеть перед подключением кондиционера.
- Обеспечьте беспрепятственное подключение кондиционера к сетевой розетке.
- Дополнительные комплектующие должны быть промаркированы (буквами либо символами) с указанием направления потока хладагента.
- Для выполнения электроработ следуйте рекомендациям данной Инструкции, а также местным нормам. Используйте отдельный кабель и розетку. Недостаточная мощность электрической цепи или наличие повреждений могут повлечь удары током или возгорание.
- Используйте специализированный электрический кабель, проконтролируйте его жесткое соединение, зафиксируйте его хомутом, так, чтобы воздействие внешних факторов не повредило его. Некачественное соединение или фиксация могут повлечь удары током или возгорания.
- Крышка клеммной коробки должна быть надежно прикреплена к прибору. Это позволит избежать перегрева в местах соединения электрических проводов, а так же возгорания или ударов током.
- В случае повреждения кабеля электропитания обратитесь к Производителю или к авторизованной сервисной службе для его замены.
- Устройство защитного отключения, должно быть подключено к электрической сети.
- При монтаже трубопровода не допускайте попадания воздуха в трубопровод хладагента, так как это может повлечь за собой снижение работоспособности прибора. Повышенное давление в контуре охлаждения, может привести к возгоранию, а также травмировать человека.
- Не модифицируйте кабель электропитания и не используйте кабели других производителей. Не подключайте в розетку, отведенную для кондиционера, другие устройства. Это может повлечь за собой возгорание или удар током.

• При эксплуатации кондиционера в местности, подверженной сильным ветрам, тайфунам и землетрясениям, необходим специальный для такой местности монтаж. Неправильная установка кондиционера может привести к его падению и несчастным случаям.

Если произошла утечка хладагента - немедленно проветрите помещение. При контакте с огнем или источником тепла (обогреватель, кухонная плита, печь), хладагент может образовать ядовитые газы.

- Температура циркулирующего хладагента высока, пожалуйста, держите соединительный кабель вдали от медных труб.
- После завершения монтажных работ проверьте, нет ли утечки хладагента.

Заземлите прибор:

Не заземляйте прибор вблизи газовых или водяных труб, громоотводов или телефонных линий. Ненадлежащее заземление может привести к удару током.

Установите устройство защитного отключения. Его отсутствие может привести к удару током.

Сначала подключите межблочный кабель, затем – подключите кабель питания. Не подключайте кондиционер к сети, пока не будет закончена работа по монтажу трубопроводов и электрооборудования.

Для предотвращения образования конденсата установите дренажный шланг и обеспечьте его изоляцию.

Неправильная установка дренажного шланга может привести к протечке воды и порче имущества.

Устанавливайте внутренний и внешний блоки, электропроводку и трубопроводы как минимум на расстоянии 1 метра от телевизора/радио, чтобы предотвратить помехи изображения/звука или шум. В некоторых случаях, в зависимости от радиочастоты, дистанции в 1 метр может быть недостаточно, чтобы предотвратить помехи.

Прибор не предназначен для эксплуатации детьми и людьми с ограниченными возможностями без присмотра.

Не устанавливайте кондиционер в помещениях:

- где могут находиться масла, полученные из нефтяных фракций
- с повышенной концентрацией соли в воздухе (например, у берега моря)
- где в воздухе присутствуют ядовитые газы
- с сильными перепадами напряжения (например, рядом с заводами)
- в автобусах, в очень маленьких помещениях кладовках, шкафах
- подверженных воздействию пара, летучих масел
- где присутствуют сильные электромагнитные волны
- рядом с горючими материалами и газами
- где присутствуют кислотные или щелочные испарения
- в других местах с нестандартными условиями

2. Информация по монтажу

Для правильного монтажа кондиционера, пожалуйста, внимательно ознакомьтесь с данной Инструкцией.

- Монтаж кондиционера должен выполняться только квалифицированным персоналом.
- При монтаже наружного и внутреннего блоков, а также трубопровода хладагента будьте предельно внимательны и строго придерживайтесь рекомендаций данной Инструкции.
- При установке кондиционера на металлическую поверхность обеспечьте надежную изоляцию электропроводки в соответствии с местными стандартами.
- Перед подключением электропитания убедитесь, что все монтажные работы завершены и проведены правильно.
- Ввиду постоянного совершенствования оборудования в данное руководство могут быть внесены изменения без предварительного уведомления об этом.

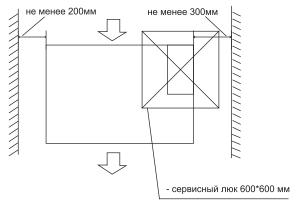
2.1. Порядок установки кондиционера.

- 1. Выберите место для установки кондиционера.
- 2. Установите внутренний блок.
- 3. Установите наружный блок.
- 4. Выполните прокладку трубопровода.
- 5. Установите дренажный шланг.
- 6. Подключите кондиционер к источнику электропитания.
- 7. Протестируйте правильность работы кондиционера.

3. Осмотр и обращение с кондиционером

После доставки кондиционера тщательно проверьте упаковку. При обнаружении каких-либо повреждений, сразу же сообщите сервисной службе Производителя.

При перевозке/перемещении Кондиционера примите во внимание следующее:


- 1. Знак 👤 означает «хрупко, необходимо бережное обращение».
- 2. Знак 11 означает «держать в вертикальном положении» во избежание повреждения компрессора.
- 3. Прежде чем взять прибор в руки, определите место, куда его нужно будет переместить.
- 4. Перемещайте прибор в оригинальной упаковке.
- 5. Не поднимайте прибор за упаковочные ленты.

4. Монтаж внутреннего блока

4.1. Выбор места установки (рис. 4-1)

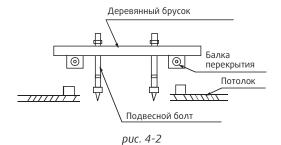
Внутренний блок должен быть установлен в надлежащем месте, отвечающем следующим требованиям:

- Наличие свободного пространства для монтажа и обслуживания прибора.
- Поверхность потолка, куда должен крепиться внутренний блок строго горизонтальна и обладает достаточной прочностью, чтобы выдержать его вес.
- Отсутствие препятствий на пути входящего и выходящего воздушных потоков, минимальное влияние наружного воздуха.
- Воздушный поток может беспрепятственно распространяться по всему помещению.
- Обеспечен беспрепятственный доступ к трубопроводу хладагента и дренажному шлангу для под-ключения и обслуживания прибора.
- Отсутствие прямого воздействия обогревателей.

Puc. 4-1

Устанавливайте внутренний и наружный блоки, электропроводку, трубопроводы как минимум на расстоянии 1 метра от телевизора/радио, чтобы предотвратить помехи изображения/звука или шумы. В некоторых случаях, в зависимости от радиочастоты, дистанции в 1 метр может быть недостаточно, чтобы предотвратить помехи.

4.2. Установка блока

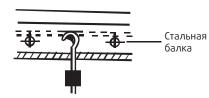

4.2.1. Монтаж подвесных болтов (х4, Ø10)

- Руководствуйтесь данными инструкции для определения расстояния между точками подвеса блока.
- Зафиксируйте подвесные болты.
- В зависимости от конструкции потолка и перекрытий может отличаться процесс установки прибора. В ряде нестандартных случаев проконсультируйтесь с соответствующей строительной организацией.
- Удостоверьтесь в том, что поверхность потолка, где должен быть установлен прибор, является горизонтальной и ровной. Укрепите потолочные перекрытия, во избежание возможных вибраций.
- Укоротите балку перекрытия, если это необходимо.
- Укрепите поверхность в месте установки прибора. Укрепите крышные балки.
- После выбора места установки кондиционера, расположите трубопроводы, дренажный шланг, внешние и наружные кабели согласно схеме их соединения (сделайте это перед тем, как будете располагать блоки кондиционера).
- Смонтируйте подвесные болты в зависимости от типа конструкции.


(!)

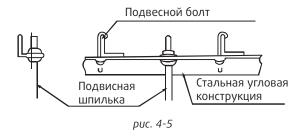
Убедитесь, что минимальный уклон дренажной линии – 1/100.

Деревянная конструкция: Расположите деревянный брусок над балками перекрытия, затем закрепите подвесные болты (рис. 4-2).

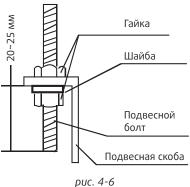

Новая бетонная конструкция: Вставка или бетонирование подвесных болтов (рис. 4-3).

puc. 4-3

Имеющаяся бетонная конструкция: Для более надежной фиксации установите подвесной кронштейн при помощи анкера в бетонную конструкцию на глубину 45-50 мм (рис. 4-4).

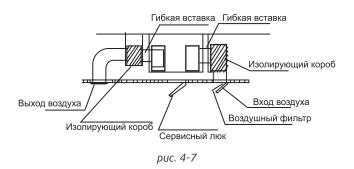


Бетонирование подвесной шпильки


puc. 4-4

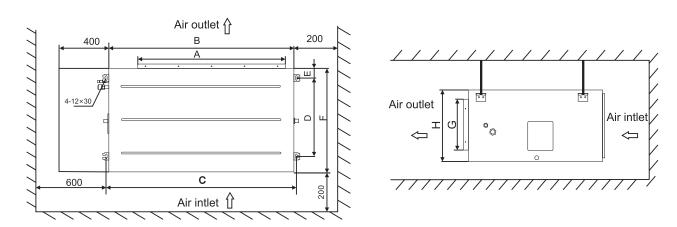
Стальная балка перекрытия: Установите и используйте как опору стальную угловую конструкцию (рис. 4-5):

4.2.2. Установка внутреннего блока


- Подвесьте внутренний блок на подвесные болты и закрепите.
- Во избежание протечек убедитесь, что блок расположен горизонтально (используйте уровень) (рис. 4-6):

4.2.3 Установка воздуховодов и дополнительных аксессуаров

- Установите фильтр (опционально) в соответствии с размером воздухозаборного отверстия.
- Обеспечьте изоляцию соединения воздуховода и блока.
- Вход и выход воздушного потока должны находиться на расстоянии, обеспечивающим циркуляцию воздуха в помещении.
- Рекомендуется следующая схема соединений воздуховодов (рис. 4-7):



- Вес воздуховода не должен передаваться на внутренний блок.
- Используйте гибкие вставки из негорючих материалов для уменьшения вибрации.
- Изолируйте воздуховод для того, чтобы избежать протечек конденсата и обеспечить дополнительную шумоизоляцию.

4.2.4 Расположение внутреннего блока

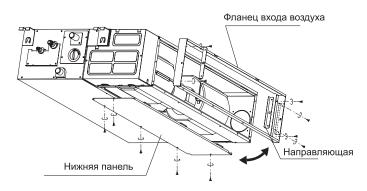
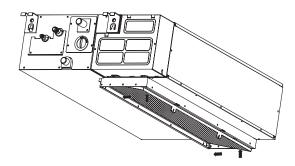


Таблица размеров:

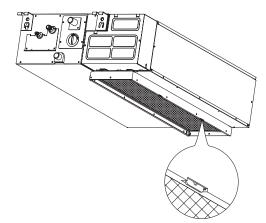
Модель	Α	В	С	D	E	F	Н	G
18-36K	812	1000	1039	600	52	700	177	246
48-60K	1212	1400	1439	600	52	700	177	246

4.2.5 Изменение направления входа воздуха.

1. Снимите нижнюю панель и фланец, высвободите крепление направляющих.

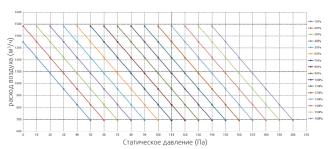


2. Приклейте пористый уплотнительный материал (поставляется в комплекте), как показано на рисунке ниже, после чего поменяйте местами панель и фланец.

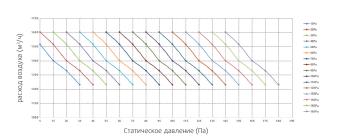


3. Установите фильтр, закрепив его на фланце.

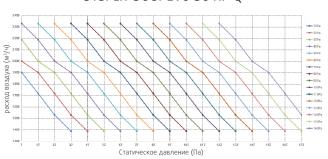
4. Закрепите фильтр в предусмотренных крепежных отверстиях на фланце.

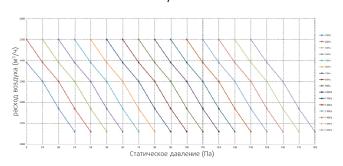


Данные, указанные в настоящей Инструкции несут описательный характер и могут отличаться от параметров приобретенного Вами кондиционера.



4.3 Диаграммы статического давления средненапорных канальных кондиционеров SYSPLIT DUCT EVO


SYSPLIT DUCT EVO 18 HP Q


SYSPLIT DUCT EVO 24 HP Q

SYSPLIT DUCT EVO 36 HP Q

SYSPLIT DUCT EVO 48 HP R/ SYSPLIT DUCT EVO 60 HP R

4.3.1 Установка значения статического давления

4.3.1.1 Заводские настройки

Мощность	Модель	Величина статического давления(Ра)	Код
18k/Btu	SYSPLIT DUCT EVO 18 HP Q	20	0602
24k/Btu	SYSPLIT DUCT EVO 24 HP Q	20	0602
36k/Btu	SYSPLIT DUCT EVO 36 HP Q	40	0604
48k/Btu	SYSPLIT DUCT EVO 48 HP R	50	0605
60k/Btu	SYSPLIT DUCT EVO 60 HP R	50	0605

4.3.1.2 Установка статического давления (пример: 30Па) с использованием проводного пульта управления SYS XK05A

Шаг 1

Прикоснитесь к кнопке on/of и включите дисплей пульта, как показано на правом рисунке.

Шаг 2

Зажмите кнопку **"FUNCTION"** на 5 секунд, чтобы зайти в меню установки, как показано на рисунке.

Шаг 3

Нажимайте кнопки " $\blacktriangle \nabla$ " для изменения первых двух цифр с "01XX" до "06XX", как показано на рисунке.

Шаг 4

Снова зажмите кнопку **"FUNCTION"** на 5 секунд, чтобы зайти в меню изменения статического давления, последние две цифры "0601" будут мигать ,нажимайте кнопки "▲ ▼" для изменения последних двух цифр "06ХХ" чтобы установить требуемое значение статического давления. На правом рисунке установленный код "0603" означает, что выбранная величина статического давления внутреннего блока - 30 Па.

Таблица кодов статического давления									
Статическое давление (Pa)	0	10	20	30	40	50	60	70	80
Код	0600	0601	0602	0603	0604	0605	0606	0607	0608
Статическое давление (Ра)	90	100	110	120	130	140	150	160	
Код	0609	0610	0611	0612	0613	0614	0615	0616	

Шаг 5

Нажмите кнопку **"FUNCTION"** для подтверждения.

Шаг 6

Нажмите кнопку "▲" для изменения первых двух цифр с "**06**XX" на "**07**XX", как показано на картинке.

Шаг 7

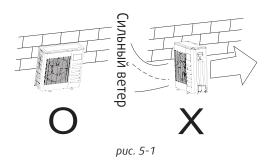
Снова зажмите кнопку **"FUNCTION"** на 5 секунд, чтобы зайти в меню последние две цифры "07XX" будут мигать, нажимайте кнопки " \blacktriangle \blacktriangledown ", чтобы изменить "07XX" на "0701".

Если вы установите параметр 0701, это означает, что вы установили величину статического давления самостоятельно.

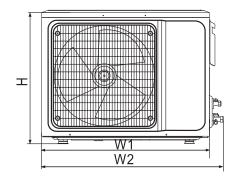
Шаг 8

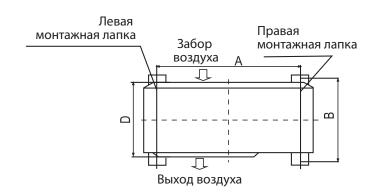
Нажмите кнопку "**FUNCTION"** для подтверждения и завершения установки.

5. Монтаж наружного блока


5.1 Выбор места установки

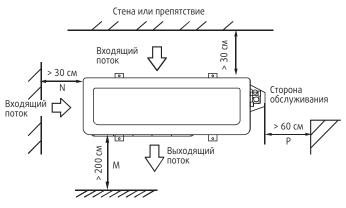
Наружный блок должен быть установлен в месте, отвечающем следующим требованиям:


- Наличие свободного пространства для монтажа и обслуживания блока.
- Отсутствие преград на пути воздушного потока, отсутствие сильного ветра.
- Сухое, хорошо вентилируемое пространство.
- Поверхность, на которую будет установлен прибор, должна быть строго горизонтальной и достаточно прочной, чтобы выдержать его вес, не должна создавать дополнительный шум или вибрацию.
- Установка наружного блока в данном месте не создаст дискомфорт для соседних помещений.
- Обеспечена возможность беспрепятственной установки трубопровода и кабелей.
- В случае утечки хладагента не должна возникать опасность возгорания.
- Длина трубопровода между наружным и внутренним блоками не должна превышать допустимой, рекомендованной Производителем.
- Возможность беспрепятственного доступа к трубопроводу хладагента и дренажному шлангу для подключения и обслуживания кондиционера.



- Отсутствие прямого воздействия обогревателей.
- Если наружный блок устанавливается с наветренной стороны (например, на побережье), его нужно располагать по длине (вдоль стены) или использовать защитные экраны, поддерживая, таким образом, эффективную работу вентилятора (рис. 5-1).
- По возможности, не устанавливайте наружный блок в местах попадания прямых солнечных лучей.
- В случае необходимости, установите экран, для защиты от сильных воздушных потоков.
- В процессе работы на обогрев, вода выводится из наружного блока. Конденсат должен беспрепятственно выводиться через соответствующий дренаж, чтобы не доставлять неудобств окружающим людям и объектам.
- Выберите место установки, чтобы блок не подвергался снежным заносам, скоплению листвы и прочим воздействиям окружающей среды. Если воздействий окружающей среды избежать невозможно, закройте блок чехлом.
- Располагайте внешний и внутренний блок как можно ближе друг к другу.
- По возможности, устраните какие-либо препятствия вокруг блока, чтобы ничего не мешало свободной циркуляции воздуха и не привело к потере производительности.
- Минимально допустимые расстояния, указанные на монтажной схеме могут быть неприменимы в ситуации закрытого пространства. Необходимо, чтобы 2 из 3 сторон наружного блока были свободны от каких-либо преград или конструкций. (Рис. 5-2)

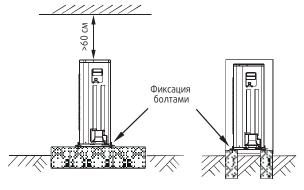
5.2. Габариты наружного блока



Монтажные размеры

Модель	W1	W2	Н	D	Α	В
18K	800	860	545	315	545	315
24K	900	950	700	350	630	350
36K	970	1045	805	395	675	410
48-60K	940	1010	1325	370	625	364

5.3. Пространство для установки и обслуживания


Puc. 5-2

Схемы и изображения в данной инструкции носят описательный характер и могут немного отличаться от прибора, который Вы приобрели.

5.4. Перемещение и установка

- Будьте осторожны при подъеме блока с помощью строп, помните, что его физический центр не совпадает с центром тяжести.
- Никогда не удерживайте и не зажимайте решетку воздухозаборника, так как это может привести к ее деформации.
- Не прикасайтесь к вентилятору руками или какими-либо предметами.
- Не наклоняйте блок более чем на 45 градусов, не кладите его на боковую сторону.
- Обеспечьте прочное основание для размещения наружного блока (рис. 5-3).

Puc. 5-3

5.5 Расположение прибора на бетонном основании

- Основание должно быть плоским и, желательно, выше уровня пола на 100-300 мм.
- Установите дренаж вокруг основания.
- Используйте анкера М10 для установки наружного блока.
- При установке наружного блока на крыше или на балконе следует избегать расположения дренажа в местах, где часто проходят люди, так как при низкой температуре дренажная вода может превратиться в лед, образуя скользкую поверхность.

6. Монтаж трубопровода

Убедитесь в том, что перепад высот между внутренним и наружным блоками, количество перегибов и длина труб хладагента, соответствуют следующим рекомендациям (табл. 6-1):

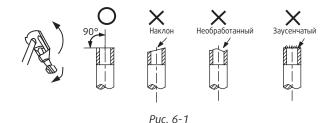
Таблица 6-1

Модель	Жидкостной трубопровод	Газовый трубопровод	Длина трубопровода (м.)	Максимальный перепад высот (м.)	Количество перегибов
				R410A	
18	Ø6.35 (1/4")	Ø12.7 (1/2")	30	20	4
24	Ø9.52 (3/8")	Ø15.9 (5/8")	30	25	4
36	Ø9.52 (3/8")	Ø15.9 (5/8")	30	25	6
48	Ø9.52 (3/8")	Ø19 (3/4")	50	30	8
60	Ø9.52 (3/8")	Ø19 (3/4")	50	30	8

6.1. Монтаж трубопровода хладагента

Все работы должны выполняться сертифицированными техническими специалистами и должны соответствовать местным строительным нормам.

- Во время монтажа не допускайте попадания пыли, грязи и других посторонних частиц в систему трубопровода.
- Приступайте к монтажу трубопровода хладагента только после установки и надежной фиксации наружного и внутреннего блоков.
- Трубопровод хладагента должен быть сухим не допускайте попадания влаги внутрь.
- Теплоизолируйте газовый и жидкостный трубопровод. Это позволит избежать протечки конденсата.
- В случае, если наружный блок находится выше внутреннего, производитель рекомендует установку маслоподъемных петель. Они устанавливаются в нижней части восходящих вертикальных участков хладопровода, высотой от 2,5 метров. Если высота восходящего участка трубопровода более 7,5 метров, должна устанавливаться вторая маслоподъемная петля. В общем случае маслоподъемные петли необходимо монтировать через каждые 7,5 метров восходящего вертикального участка хладопровода. При изготовлении маслоподъемной петли из стандартных отводов (уголковых фитингов) следует иметь ввиду, что ее размеры должны быть как можно меньше. Лучший вариант приобретение стандартной маслоподъемной петли необходимого диаметра. При изготовлении маслоподъемной петли путем изгиба трубы, следует соблюдать требование, чтобы полная длина петли не превышала 8 диаметров трубопровода.
- 1. Просверлите в стене отверстие соответствующее диаметру гильзы для стенного отверстия, затем установите гильзу.
- 2. С помощью изоляционной ленты соедините вместе соединительные трубы и электрокабеля. Пропустите получившийся пучок через гильзу стенного отверстия снаружи внутрь. Соблюдайте осторожность, чтобы не повредить трубы.
- 3. Соедините трубы хладагента, руководствуясь разделом 6.1.1.
- 4. Откачайте воздух из труб с помощью вакуумного насоса, руководствуясь разделом 6.2.
- 5. Откройте запорные вентили наружного блока, чтобы обеспечить соединение труб хладагента внутреннего и наружного блоков.
- 6. Убедитесь в отсутствии утечек хладагента с помощью мыльного раствора или течеискателя.
- 7. Закройте соединение в месте подвода трубопровода к внутреннему блоку с помощью звуко- и тепло-изолирующего материала и оберните соединение изоляцией для труб, чтобы предотвратить протечку конденсата.



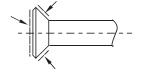
Убедитесь, что изоляционный материал покрывает газовый и жидкостный трубопровод, а также все соединения. Неполная изоляция может привести к образованию конденсата.

6.1.1. Соединение труб

- Произведите развальцовку
 - Правильно обрежьте трубу при помощи трубореза (рис. 6-1).

- Наденьте конусную гайку на трубу и развальцуйте трубу.
- Определите размер раструба, основываясь на таблице 6-2.

Таблица 6-2


Duamota taufu	Крутящий момент затяжки	Размер рас	Форма раструба	
Диаметр трубы	резьбового соединения, Н.м.	мин.	макс.	Форма раструба
Ø 6.4	15 - 19 Н.м.	8.3	8,7	90°±4
Ø 9.5	35 - 40 Н.м.	12	12,4	450 22
Ø 12.7	50 - 60 Н.м.	15.4	15,8	
Ø 15.9	62 - 76 Н.м.	18.6	19	R0.4~0.8
Ø 19.1	98 - 120 Н.м.	22.9	23,3	·

- Снимите защитную и сервисную панели.
- Снимите защитную панель запорных вентилей.
- Сначала подсоедините трубопровод к внутреннему блоку, затем к наружному. Сгибайте трубу аккуратно, чтобы не повредить ее (рис. 6-2). При необходимости воспользуйтесь трубогибом.
- Угол сгиба не должен быть меньше 90 градусов.
- Желательно производить изгиб посередине трубы. Чем больше радиус изгиба, тем лучше.
- Не сгибайте трубу более 3-х раз.
- Смажьте посадочную поверхность трубы и конусную гайку маслом, заверните гайку на 3-4 оборота рукой, прежде чем окончательно ее затянуть.
- При затяжке используйте гаечный и динамометрический ключи, соблюдая крутящий момент, указанный в таблице 6-2.

Сгибайте трубу при помощи больших пальцев

Puc. 6-2

Puc. 6-3

Чрезмерная затяжка может повредить развальцованный участок, слишком слабая – привести к протечке. После окончания соединительных работ, проверьте, нет ли утечки газа.

6.2 Запорный вентиль.

Открывание запорного вентиля:

- Снимите колпачок и с помощью шестигранного ключа, поверните вентиль против часовой стрелки.
- Отпирайте вентиль до упора. Не применяйте излишнюю силу, так как это может повредить вентиль. Всегда используйте специализированные инструменты.
- Убедитесь, что надежно затянули вентиль.

Закрывание запорного вентиля:

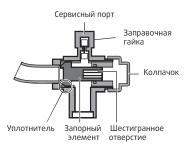
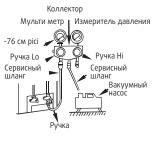

- Снимите колпачок и, при помощи шестигранного ключа, поверните запорный вентиль по часовой стрелке.
- Надежно затяните вентиль, пока он не соприкоснется с основным корпусом.
- Убедитесь, что надежно затянули вентиль. Определите необходимую силу затяжки исходя из таблицы 6-3.

Таблица 6-3

Момент затяжки резьбового соединения (н * м) (для закрывания поворот по часовой стрелке)					
Размер запорного вентиля	Запорныі	й вентиль	Колпачок клапана	Заправочная гайка	
Ø 6.4	5-7	F 7	13.5 - 16.5		
Ø 9.5	5-7	шестигранный ключ 4 мм	18 - 22		
Ø 12.7	7-9	TOTION T MIM	15.4	11.5 - 13.9	
Ø 15.9	9-11	шестигранный	23-27		
Ø 19.1	11-13	ключ 6 мм	35 - 40		

Для обслуживания соединений трубопровода всегда используйте сервисный шланг. После того, как Вы зафиксировали колпачок, убедитесь в том, что нет протечки.


Puc. 6-5

6.3. Использование вакуумного насоса

- Убедитесь, что запорные вентили А и В закрыты. Ослабьте и снимите заправочные гайки запорных вентилей А и В. Подсоедините сервисный шланг манометра к заправочному отверстию вентиля А.
- С другой стороны подсоедините сервисный (заправочный) шланг манометра к вакуумному насосу.
- Полностью откройте ручку "Lo" (низ.) манометра.
- Включите вакуумный насос. Начав откачивание воздуха, слегка ослабьте заправочную гайку вентиля В и убедитесь, что воздух попадает внутрь (при этом рабочий шум вакуумного насоса слегка меняется, а вакуумметр показывает минусовое значение). Затем затяните заправочную гайку.
- Удаление воздуха следует проводить не менее 15 минут до тех пор, пока показатель вакуумметра не достигнет отметки -76 см рт.ст.(-1х105 Па). После окончания откачки воздуха полностью закройте ручку "Lo" манометра и выключите вакуумный насос.
- Ослабьте и снимите колпачки запорных вентелей А и В, чтобы полностью их открыть. Затем снова наденьте колпачки.
- Снимите сервисный шланг с запорного вентиля А и плотно затяните гайку.

Puc. 6-7

7.4. Дозаправка хладагента

Дозаправку хладагента необходимо производить только после окончания соединения трубопровода.

- Хладагент может быть заправлен только в том случае, если произведен тест на отсутствие утечки и вакуумирование.
- Необходимо строго соблюдать все правила безопасности, ввиду опасности жидкого фреона.
- Заправка неподходящим хладагентом может привести к взрыву и несчастному случаю, всегда будьте уверены, что используете надлежащий хладагент.
- Открывайте баллоны, содержащие хладагент медленно.
- Всегда используйте защитные перчатки, а также защитите свои глаза.
- Наружный блок заправлен хладагентом на заводе. Рассчитайте необходимое количество для дозаправки, основываясь на диаметре и длине жидкостного трубопровода между наружным и внутренним блоками.

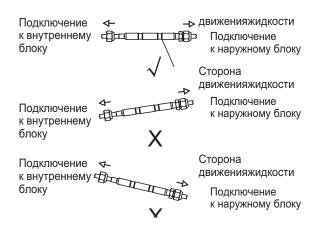
Таблица 6-4

Диаметр трубопровода L (мм.)	Расчет количества хладагента (L - более 5 м в одну сторону)	Расчет количества хладагента (L - менее 5 м в одну сторону)
Ø 6.4	0,02 кг/м х (L-5)	_
Ø 9.5	0,05 кг/м x (L-5)	_

Если в результате расчета по таблице получено отрицательное значение R, то дозаправку хладагента производить не следует.

Проверьте, что все соединения трубопровода надежно изолированы. Недостаточная изоляция соединений может привести к протечкам конденсата.

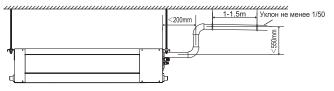
6.5. Схема соединения

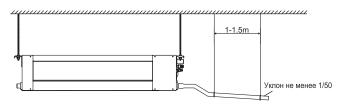


A

Пожалуйста, приобретайте фитинги, соответствующие требованиям, указанным в инструкции.

Руководствуйтесь схемами при установке Кондиционера:



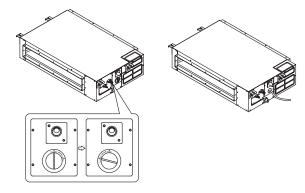

7. Установка дренажной системы

- В качестве дренажного шланга можно использовать полиэтиленовую трубу (внтутренний диаметр 25 мм, внешний 29-31 мм). Труба не входит в комплектацию.
- Закрепите дренажный шланг к выходному отверстию патрубка дренажного насоса с помощью соединительного фитинга. При удлинении дренажного шланга обеспечьте дополнительную изоляцию соединительных фитингов. Это позволит избежать протечек.
- Дренажный шланг и дренажный патрубок внутреннего блока должны быть надежно изолированы, что предотвратит образование конденсата на дренажной линии.
- Расположите дренажный шланг под уклоном не менее 1/50. Избегайте неровных поверхностей и скопления воды.
- Слишком сильное натяжение дренажного шланга может привести к смещению блока. Интервал крепления дренажного шланга -1-1,5 м. Вы также можете закрепить дренажный шланг вместе с трубопроводом хладагента.
- Используйте опоры-фиксаторы, а также другие методы крепления, чтобы избежать провисания дренажного шланга, если дренажная линия очень длинная.
- Если дренажный шланг расположен выше патрубка дренажного насоса, то шланг необходимо расположить вертикально. Перепад высоты должен быть не более 550 мм, иначе может произойти выливание воды при остановке кондиционера (только для кондиционеров с встроенным дренажным насосом).
- Выход воды из дренажного шланга должен быть свободным, не погружайте его в воду. Если Вы направляете дренажный шланг в канализационный водосток, организуйте сифон, чтобы неприятные запахи не попали внутрь помещения.

Кондиционер со встроенным дренажным насосом

Кондиционер без дренажного насоса

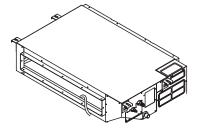
Puc.7-2



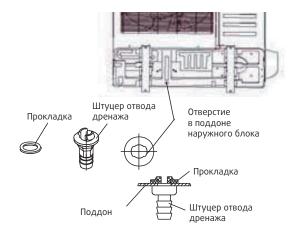
7.1 Тестирование дренажной системы внутреннего блока

- Проверьте целостность дренажного шланга.
- В строящемся здании проверку дренажного шланга на протечки необходимо проводить перед установкой подвесного потолка.

Кондиционер со встроенным дренажным насосом:


1. Снимите крышку с отверстия для тестирования и налейте через него около 2 л воды.

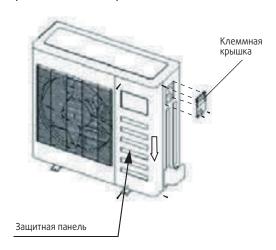
- 2. Включите кондиционер и установите его в режим охлаждения. Прислушайтесь к звуку работы дренажного насоса. Проверьте, как сливается вода из дренажного шланга (в зависимости от длины шланга задержка слива конденсата в дренаж может составить до 1 минуты). Кроме того, проверьте герметичность соединений.
- 3. Остановите кондиционер, отключите электропитание, закройте крышку тестового отверстия.


Кондиционер без дренажного насоса:

1. Снимите крышку с отверстия для тестирования и налейте через него около 2 л. воды. Убедитесь, что вода беспрепятственно проходит по дренажному шлангу.

7.2 Установка дренажного патрубка наружного блока

• Наденьте уплотняющую прокладку на дренажный патрубок, вставьте патрубок в дренажное отверстие наружного блока, поверните патрубок на 90 градусов и зафиксируйте его.

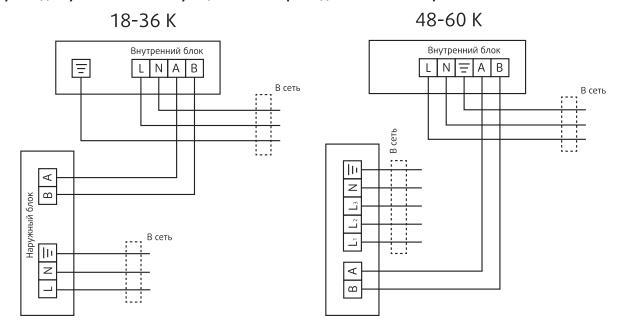


8. Электроподключение

- Электроподключение должно быть осуществлено в соответствии со всеми местными стандартами.
- Устройство должно быть подключено к отдельной линии электропитания.
- Источник электропитания Устройства должен быть заземлен, в свою очередь заземление должно соединяться с заземлением внешнего и внутреннего блоков.
- Работа по подключению электропитания должна быть выполнена квалифицированным специалистом согласно схеме электропроводки.
- Убедитесь, что силовая электропроводка и сигнальная электропроводка не перекручены между собой, во избежание перекрестных помех.
- Проверьте правильность подключения электропроводки перед включением питания.

8.1 Подключение кабеля

• Снимите защитную панель, если она отсутствует на внешнем блоке, снимите сервисную панель и потяните ее по стрелке, чтобы удалить защитную панель.


- Подключите соединительные кабели к клеммам в соответствии с номерами на внутреннем и внешнем блоке.
- Установите защитную панель.

8.2 Информация для подключения электропитания.

Модель (R410A, охлаждение и нагрев)		18-36	48-60
	Количество фаз	1	3
Параметры	Напряжение и частота	208-240B	380-420B
электропитания	Прерыватель цепи/ Предохранитель(A)	25/20	32/25

8.3 Руководствуйтесь соответствующей схемой при подключении электропитания

9. Режим тестирования

Тестирование кондиционера можно выполнять только после окончания монтажных работ. Перед тем как приступить к тестированию, необходимо убедиться в следующем:

- Наружный и внутренний блоки установлены правильно.
- Трубопровод и электрические кабели подсоединены надлежащим образом.
- В контуре хладагента отсутствуют утечки.
- Обеспечен беспрепятственный отвод конденсата.
- Обеспечена надлежащая теплоизоляция трубопровода и соединений.
- Организовано надлежащее заземление.
- Зарегистрированы значения длины трубопровода и дополнительной заправки хладагента (при необходимости).
- Параметры источника электропитания соответствуют номинальным значениям электропитания кондиционера.
- Отсутствуют какие-либо препятствия на пути следования выходящего и входящего воздушных потоков внутреннего и наружного блоков.
- Открыты запорные вентели со стороны движения жидкости и газа.
- Кондиционер прогрет предварительным включением электропитания.
- Установите держатель пульта управления в месте, удобном для пользователя, и там, где сигнал может легко достигать ресивер внутреннего блока.
- С помощью пульта дистанционного управления установите кондиционер в режим охлаждения («Cooling») и проверьте возможности кондиционера, руководствуясь инструкцией по эксплуатации. При обнаружении неисправностей обращайтесь к разделу «Устранение неисправностей» в инструкции по эксплуатации.

9.1 Проверка внутреннего блока. Убедитесь, что:

- Выключатель пульта управления работает нормально.
- Работают все кнопки пульта управления.
- Свободно двигаются воздухораспределительные жалюзи.
- Работают все индикаторы.
- Регулирование температуры осуществляется надлежащим образом.

- Работают кнопки временных режимов.
- Обеспечен надлежащий дренаж.
- Отсутствует шум и чрезмерная вибрация.
- Кондиционер нормально работает в режиме нагрева (при наличии данного режима)

9.2 Проверка наружного блока. Убедитесь, что:

- Отсутствует шум и чрезмерная вибрация.
- Горячий воздушный поток, шум и отвод конденсата не создают неудобств окружающим.
- Отсутствуют утечки хладагента.

Задержка повторного запуска компрессора на 3 минуты обусловлена защитной функцией.

10. Коды ошибок

Ошибка дисплея	Неисправность	Возможные причины неисправности
		Повреждение датчика комнатной температуры воздуха во внутреннем блоке
	Ошибка датчика комнатной тем-	Плохой контакт датчика комнатной температуры воздуха во внутреннем блоке
A1	пературы воздуха во внутреннем блоке	Повреждение проводки датчика комнатной температуры воздуха во внутреннем блоке
		Повреждение главной платы управления РСВ во внутреннем блоке
		Повреждение датчика температуры воздуха во внутреннем блоке
A2	Ошибка датчика температуры в	Плохой контакт датчика температуры воздуха во внутреннем блоке
AZ	середине испарителя внутреннего блока	Повреждение проводки датчика температуры воздуха во внутреннем блоке
		Повреждение главной платы управления РСВ во внутреннем блоке
		Повреждение датчика температуры жидкостной линии во внутреннем блоке
	Ошибка датчика температуры на	Плохой контакт датчика температуры жидкостной линии во внутреннем блоке
A3	жидкостной линии внутреннего блока	Повреждение проводки датчика температуры жидкостной линии во внутреннем блоке
		Повреждение главной платы управления РСВ во внутреннем блоке
	Ошибка датчика температуры на газовой линии внутреннего блока	Повреждение датчика температуры газовой линии во внутреннем блоке
A 4		Плохой контакт датчика температуры газовой линии во внутреннем блоке
A4		Повреждение проводки датчика температуры газовой линии во внутреннем блоке
		Повреждение главной платы управления РСВ во внутреннем блоке
		Поплавковый выключатель отсоединен или плохо подсоединен
A5		Ошибка установки параметров модели
AS	Неисправность дренажа	Установлена заглушка дренажа
		Повреждение дренажного насоса
		Низкое напряжение
A6	Неисправность вентилятора вну-	Повреждение проводки
Ab	треннего блока	Повреждение главной платы управления РСВ во внутреннем блоке
		Повреждение двигателя
A8	Ошибка модуля EEPROM внутренне-	Повреждение главной платы управления РСВ во внутреннем блоке
Ao	го блока	Повреждение модуля EEPROM
	_	Повреждение главной платы управления РСВ во внутреннем блоке
A9	Ошибка связи внутреннего и наружного блока	Повреждение главной платы управления РСВ во внешнем блоке
	in the shall	Повреждение проводки
	Ошибка связи проводного пульта	Повреждение проводки
AA	и главной платы РСВ внутреннего	Повреждение проводного пульта
	блока	Повреждение главной платы управления РСВ во внутреннем блоке

		Заблокированы трубопроводы системы
H1	Ошибка реле высокого давления	Повреждение реле давления
		Утечка хладагента
H4	Ошибка реле низкого давления	Запорный клапан закрыт
114	ошлоке реле плокого девления	Повреждение реле давления
		
		Повреждение датчика температуры воздуха наружного блока
C1	Ошибка датчика температуры воз- духа наружного блока	Плохой контакт датчика температуры воздуха наружного блока
	Ayne nepymnere eneme	Повреждение проводки датчика температуры воздуха наружного блока
		Повреждение главной платы управления РСВ в наружном блоке
		Повреждение датчика защиты от обмерзания в наружном блоке
C2	Ошибка датчика защиты от обмер- зания в наружном блоке	Плохой контакт датчика защиты от обмерзания в наружном блоке
	запил в паружном олоке	Повреждение проводки датчика защиты от обмерзания в наружном блоке
		Повреждение главной платы управления РСВ в наружном блоке
		Повреждение датчика температуры нагнетания в наружном блоке
C3	Ошибка датчика температуры на-	Плохой контакт датчика температуры нагнетания в наружном блоке
	гнетания	Повреждение проводки датчика температуры нагнетания в наружном блоке
		Повреждение главной платы управления РСВ в наружном блоке
		Повреждение датчика температуры всасывания в наружном блоке
C6	Ошибка датчика температуры вса-	Плохой контакт датчика температуры всасывания в наружном блоке
	сывания	Повреждение проводки датчика температуры всасывания в наружном блоке
		Повреждение главной платы управления РСВ в наружном блоке
	Ошибка датчика температуры в середине конденсатора наружного блока	Повреждение датчика температуры воздуха в наружном блоке
C8		Плохой контакт датчика температуры воздуха в наружном блоке
CO		Повреждение проводки датчика температуры воздуха в наружном блоке
		Повреждение главной платы управления РСВ в наружном блоке
	Ошибка связи наружного и внутрен- него блока	Повреждение главной платы управления РСВ во внутреннем блоке
J2		Повреждение главной платы управления РСВ во внешнем блоке
		Повреждение проводки
		Повреждение ведомой платы РСВ
J3	Ошибка связи ведомой платы РСВ и главной платы РСВ наружного блока	Повреждение главной платы РСВ
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Повреждение проводки
J7	Ошибка модуля EEPROM наружного блока	Повреждение модуля
E1	Ошибка 4-х ходового клапана	Повреждение 4-х ходового клапана
LI	OMNIONO 4-Y YORODOLO KYIQIIQHQ	Повреждение катушки 4-х ходового клапана
		Утечка хладагента
E3	Защита от обмерзания	Запорный клапан закрыт
		Повреждение главной платы управления РСВ во внешнем блоке
E8	Ошибка защиты от перегрева вну-	Повреждения внутри конденсатора наружного блока
ΕŌ	треннего блока в режиме обогрева	Повреждения внутри испарителя внутреннего блока
31	Ошибка защиты инверторного модуля	Ошибка защиты инверторного модуля
32	Защита компрессора	Повреждение EE платы
		Низкое напряжение питания, несморя на высокий ток
33	Защита модуля программного обе- спечения	Напряжение питание превысило предел
	Спечепия	Остановка или слишком низкая скорость вентилятора наружного блока
34	Ошибка старта компрессора	Не подключено питание компрессора
		Превышение рабочего тока в устройстве
35	Защиты от перенапряжения	Резкое падение напряжения при работе устройства
	Summing the pendiphiketivin	Превышение напряжения

36	Защита от превышения или низкого напряжения	Превышение входного напряжения
		Низкое входное напряжение
37	Ошибка модульного температурного датчика наружного блока	Повреждение датчика IPM модуля компрессора
38	Защита питания фазы компрессора	Не подключено питание компрессора
39	Защита компрессора от перегрева	Плохое соединение модуля IPM компресора и обогревателя
3H	Ошибка двигателя вентялятора на- ружного блока	Повреждение двигателя
3C	Защита от превышения тока на дви- гателе наружного блока	Высокая скорость двигателя
3J	Защита от превышения напряжения на двигателе наружного блока	Низкое выходное напряжение
3E	Защита программного обеспечения РFC привода компрессора	Превышение рабочего тока в устройстве
		Резкое падение напряжения при работе устройства
3F	Защита привода компрессора	Повреждения компонентов платы PFC
		Повреждение стабилизатора
41	IPM защита управляющей платы вентилятора наружного блока	Повреждения IPM-компонентов платы вентилятора
99	Ошибка связи ведомой платы РСВ и главной платы РСВ внутреннего блока	Ненормальное питание блока управления вентилятора
		Повреждение блока управления вентилятора
		Повреждение проводки в блоке управления вентилятора
9A	Температурная защита модуля вен- тилятора внутреннего блока	Повреждение блока управления вентилятора
9Н	Ошибка запуска вентилятора вну- треннего блока	Повреждение двигателя вентилятора
		Высокая скорость двигателя
90	Защита от превышения тока на дви- гателе внутреннего блока	Превышение рабочего тока на двигателе вентилятора
-	Защита от высокого и низкого на- пряжения на двигателе внутреннего блока	Высокое входное напряжение
9J		Низкое входное напряжение
9E	Защита IPM блока управления вен- тилятора внутреннего блока	Повреждение датчика IPM модуля двигателя
9F	EE защита блока управления венти- лятора внутреннего блока	Повреждение чипа EE блока управления

11. Правила утилизации

По истечении срока службы кондиционер должен подвергаться утилизации в соответствии с нормами, правилами и способами, действующими в месте утилизации.

12. Сертификация

Товар сертифицирован на территории Евразийского таможенного союза.

www.systemair-ac.ru www.systemair.ru